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Quantitative-diflusioo-~ MR.I coosists of deriving and djs,.
playing parameters that ~ble histological or pbymlogical
stains, i.e., that characterize in~ features of tissue microstruc-
ture and microdynamics. S~~-IIy , these parameters are objec-
tive, and iDSeIISitive to the choice of laboratory coordinate systan.
Here, tb~ two properties are ~ to derive intravoxel measures
of diffusion isotropy and the degree of diffusion anisotropy, as
well as intervoxel ~ of structural similarity, and fiber-b'.:t
organi7~n from the effective diffusion tensor, Q, which is esti-
mated in each voxel. First. Q is d~pO8ed into its isotropic and
anisotropic parts, (D) 1 and Q - (D) 1 respectively (where (D)
= Trxe(Q)/3 is the ~ diffusivity, and lis the identity tmaor).
Then. the tensor (dot) product operator is u.-d to generate a
family of new rotationa11y and translational1y invariant quantities.
FinaDy, maps of these quantitative parameters are pnxhx:ed from
high-resolution diffusion ten images (in which Q is estimated
in each voxel from a series of 2D-Fr spin-echo diffusion-weighted
images) in living cat brain. Due to the bigb inherent sensitivity of
these parameters to changes in dssue arcbite.:hlre ( L~ IDKfODX)o
1ecuJar, cellular, tiuue, and organ structure) and in its physiologic
state, their potential applications include monitoring structural
changes in development, aging. and d~~ c 1- ~ "- --

Quantitative-diffusion-tensor MRI. which we int1'OOIx:e
here. consists of deriving and displaying new qUaDlitative
scalar parameters (from the effective diffusion tensor, D)
d1at measure different inbinsic features of beterogeoeous.
anisotropic media. These imaging parameters characterize
diffusion isotropy~ diffusion anisotropy, macrostroctural
similarity, and fiber-tract organization. We call them "quan-
titative" ~U.-~ e.:h parameter behaves like a quantitative
histological or physiological stain.\ In addition. we establish
general criteria and a framework for constructing other in-
binsic quantitative imaging parameters from the diffusion
tensor.

MRI parameters that are now used to characterize diffu-
sion in anisotropic media are not quantitative. Specifically.
they are exquisitely sensitive to the choice of the laIxxatmy
coordinate system and to the applied imaging and diffusion
gradient pulse sequences. As a result, they have little val~
in drog evaluation studies, multisite studies. or retrospective
studies of a single patient Quantitative diffusion tensor MRI
overcomes these deficiencies.

When the truslational mobility of a diffusing molecule
depends ulX>n a medium' s orientation. diffusion is aniso-
tropic.1n biological tissues such as brain white matter. skele-
tal muscle, kidney. and cardiac muscle [e.g., see (2)]. we
ascribe anisotropic diffiJsion (as measured by MR s~u\)S-
copy or imaging) to the presence of heterogeneous but spa-
tially ordered macromolecular. ~branous. and ceUnlar
compartments. On the scale of a ~opic voxei. it is
appropriate to use an effective diffusion ~Dsor, D, to charac-
terize diffusion anisotropy (3). In such anisotropic media.
we use diffusion tensor MRI (1) to esrl-male an effective
diffusion tensor in each voxel. as well as to calculate its
principal (orthotropic) directions and principal diffiJsivities.
The fanner are the mublally perpendicnlar, preferred direc-
tions along which molecular displacements of the spin-la-
beled molecules are uncorrelated, while the latter are the
diffusivities along these preferred diIeCtions. We then use

INTRODucnON

Diffusion-tensor MRI (DT-MRI) is an MR imaging mo-
dality dJat provides unique microstructural and physiological
infonnation [contained in the six independent components
of the diffusion tensor, Q, and the T 2-weigbted amplitude,
A(O)]. DT-MRI also presents new challenges, one of which
is to extract and display this infonnation. One approach
we used previously was to construct three-dimensional fiber
maps and diffusion ellipsoid images ( 1) which highlight the
three-dimensional character of diffusion in tissues and other
media. Another approach. which we employ here, is to sum-
marize (or conb'act) the information embodied in the six
independent elements of Q by deriving a new set of scalar
. quantities that measure distil1ct, intrinsic microstructural fea-
tures of diffusion within tissues (and other media) with
which we can help assess its physiologic state.
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FIG. 1. (a) T ,weighted image showing regions of gray matter. white maner. and CSF-filled ventricles in in vivo cat brain. (b) Diffusion ellipsoid
image COIIsInICted from the effective diffusion tensor. O. estimated in each voxel for the RDI enclosed by the white rec1angle.

these quantities to derive measures of diffusion isotropy,
diffusion anisotropy, macrostrucblral similarity, and fiber-
tract organization.

To make the qualitative differences between these terms
clear, consider the T 2-weighted image of living cat brain
in Fig. la and the corresponding diffusion ellipsoid image
(constructed for an ROI containing the internal capsule) in
Fig. lb. In principle. an image of a diffusion anisotropy
index of this ROI should show the same contrast in voxels
containing similar types of white matter, irrespective of their
fiber-tract direction. This is because an anisotropy index
should measure the degree of preferential mobility within a
voxel. but should be insensitive to the direction along which
diffusion is preferred. Geometrically, it should characterize
the shape of the diffusion ellipsoid. but not its size or orienta-
tion. A measure of macrostrucblral (diffusive) si milarity
should identify tissues with a similar microstructure, spe-
cifically with similar principal directions and principal diffu-
sivities. We expect that such a ~~-UJlre would be large in
gray matter and larger still in the CSF-filled ventricles
(where diffusion is largely isotropic). but it would not neces-
sarily be large in regions containing white-matter fibers
whose fiber direction is changing. Geometrically, a measure
of structural similarity should measure the similarity of the
shape, size, and orientation of different diffusion ellipsoids.
Our definition of fiber-tract organization combines notions
of diffusion anisotropy aOO ~tructural similarity. Fiber-
tract organization is a property that we wish to ascribe only
to anisotropic media (like white matter) but not to isotropic
media (like the CSF-filled ventricles or most gray matter).
Essentially, this parameter should measure the macrostruc-
t.Ural similarity of the aniso~pic part of the diffusion tensor
in different voxels. Such a measure should highlight regions
like the corpus callosum or the optical tract (where white-

matter fiber tracts are packed in orderly bundles). but should
show no fiber-tract organization in voxels containing is0-
tropic media. such as gray matter and CSF-filled ventricles.
In summary. these new one-dimensional (scalar) measures
would provide new infonnation about the three-dimensional
character of diffusion in anisotropic tissues. infonnation that
has not been available using other MRI techniques.

We expect these parameters to be useful in elucidating
structural features in nonnal. diseased. or degenerating tis-
sues. The transformation of less-ordered to ordered. complex
structures is a characteristic of normal development. This
transformation occurs at a variety of length scales. including
macromolecular (e.g.. in neurofilaments and microtubules).
cellular (e.g.. in axons). tissue (e.g.. in skeletal muscle.
tendons. ligaments. and lens). and organ (e.g.. in brain white
matter. heart. and kidney). Moreover. preliminary findings
that diffusion-weighted images are sensitive to architectural
changes in the optic nerve prior to myelin deposition (4)
suggest that these new parameters could be useful in as-
sessing and characterizing nonna! and pathological develop-
mental processes. Interest continues to grow in assessing
developmental changes. particularly when induced by ge-
netic manipulation or environmental Sb"e$S. Noninvasive and
nondestructive MRI techniques that can sense these changes
may become increasingly valuable in such basic studies.

Conversely. the loss or lack of organization and structure
at the molecular. cellular. tissue. and organ length scales is
a characteristic of abnormal development. aging. or degener-
ation. For example. cardiac muscle fiber disorganization ac-
companies idiopathic cardiac myopathy and is believed to
contribute to the loss of mechanical stiffness and pumping
efficiency of the heart (5). A measure of the degree of fiber
disorganization may be useful in diagnosing such patholo-
gies. as also described by Wedeen et aI. (6). Tumors in
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white matter and muscle are also mo~ disorganized than
the sum>unding normal tissues; a parameter that measures
fiber organization may help to demarcate (segment) these
domains. Therefore, objective parameters that measure mi-
crostructural features nondestructively and noninvasively
may also be of clinical use.

BACKGROUND

Several different scalar indices derived from diffusion-
weighted images (OWls) have been used to characterize
diffusion anisotropy. Moseley et aL (7) characterized diffu-
sion anisotropy in each voxel by the ratio of differences and
sums of OWls with diffusion-sensitizing gradients applied
in two perpendicular directions. e.g.. x and y:

OWls using a model that may assume diffusion is isotropic.
Even so, these anisotropy measW'CS suffer from a mme seri-
ous failing: They inherently depend on (a) dJe choice of the
laboratory frame of refereIK:e (i.e., d1e .x", y, Z coordinate
system used to represent die diIectioos of die static B field
and the applied magnetic field gradients in an MR experi-
ment); (b) the choice of the direction of the applied diffu-
sion gradients used to acquire die OWls; (c) die orientation
and placement of the ti~ sample within die magnet; and
(d) the orientation and position of d1e macromolecular, cel-
lular, and/or fibrous structures within a voxel that produce
the observed diffusion anisotropy.

Clearly, for an anisotropy index (or any fXber scalar mea-
sure of an intrinsic charocteristic or feanue) to possess the
properties of a quantitative histological stain (soch as an
autoradiOgraph) , it should be objective (ie.., its value in
each voxel should be a known monotonic function of a mean-
ingful physical quantity) and it should be invariant with
respect to arbitrary rotations and translations. These intuitive
criteria are used explicitly below to constrain die set of ad-
missible scalar measures of sbUctUral feabUes (such as diffu-
sion anisotropy, structural similarity, and fiber organization)
that we derive from the diffusion tensor.

~Wlx - OWly
[.J]OWIx + OWly

Douek et aL (8) characterized
by the ratio of two apparent
measured with diffusion-sensi
perpendicular directions. e.g..

ADC~

ADCy

lHEORY

and displayed as a color image (8). In voxels containing
one particular tissue (such as white matter) when d1is ratio
was a maximum. its value was assumed to be ADC.l1
ADCt-the ratio of ADCs perpendicular to and parallel to
the fiber-b'act direction (9). Recently, van Geldereo et al.
( 10) proposed a scalar anisotropy index dJat is proportional
to the standard deviation of three AOCs measwed in dJree
mutually perpendicular directions: ADC~, ADCy, and ADCt,
divided by their mean value, (ADC) (10),

Measures of Isotropy and Anisotropy

Here we derive new quantitative parameters from d1e ef-
fective diffusion tensor. Q. by employing tensor operations
that to date have not been applied in MRI applications. First.
we decompose Q into isotropic and anisotropic tensors:

(0)1
isottopic
tensor

Q= + (0 - (0)1)

anisotropic
tensor

[4]

Above. the isotropic part of Q is given by the (isotropic)
identity tensor, 1. multiplied by the (scalar) mean diffusiv-
ity, (D) (11). where

«AOC. - (AOC»2~ _(~2 + <-:AOC. - (A0C)j2
(ADC)

(3&]
TrKe(Q)

3
= D.a+D"+D"=

3
~1+~+~3

3(0)= . [5]
where

(ADC) = ADC.. + ADC, + ADCz
3

and where XI, XI, and X3 are the eigenvalues (or principal
diffusivities) of Q; and D.a, D77' and Da are its diagonal
elements measured in the laboratory frame of reference. We
call the anisotropic part of Q the diffilsion deviatoric or
diffusion deviation tensor, /};:

[3b]

Unfortunately, none of these anisotropy measures is quan-
titative. Anisotropy measures based upon OWls (like Eq.
[I]) are inherently nonobjective; that is, their contrast does
not conespond to a single meaningful physical or chemical
variable or fundamental parameter, but to a complicated
combination of them. This is usually true for anisotropy
measures that use the ADC, since they are estimated from

Q - Q - (D)l [6]

The tenD "deviatoric" is apt because Q measures the devia-
tion of Q from being an isotropic tensor, and is analogous

diffusion anisotropy in a voxel
diffusion constants (ADCs) ,

tiring gradients applied in two
x and y,
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to the stress deviatoric (tensor) that is widely used in contin-
uum mechanics and material sciences [e.g., see (12)]. The
latter measures how the (symmetric) stress tensor deviates
from the isotropic mean stress tensor. To form the stress
deviatoric tensor, tz, the isotropic part of the stress tensor,
p 1, is subtracted from the original stress tensor, a::

thermodynamic considerations require that D = QT), we
can express Eq. [10] in the form

.fD";Q - (Ozz - (0»2 + (On - (0»2
Q:Q - + (0" - (0»2 + 20~ + 20~ + 20~.

[11]

[7) The first duee terms on the right-hand side of Eq. [11] are
the sum of the squared deviations between the diagonal ele-
ments of Q and their mean value, < D ); the remaining three
tenDS are the sums of the ~ of the off-diagonal ele-
ments of Q. We see that .JQ:Q is a scalar measure of the
degree to which the diffusion tensor deviates from isotropy
(in a mean-squared sense), so it is a natural basis for an
anisotropy measure.

To show that Q:Q is a scalar invariant measure of anisot-
ropy Uust as Trace(Q) is a scalar invariant measure ofisot-
ropy), we express Q:Q in tenDS of the eigenvalues of Q
[e.g., as in (13)]. In the principal frame, all off-diagonal
elements of Q vanish (i.e., Dxy = D.z: = D~ = 0) while all
its diagonal elements, Dzz, Dyy, and Du, are replaced by the
principal diffusivities, AI, A2' and A3' Equation [11] can be
rewritten as

We recognize p as either the hydrostatic pressure in a fluid
or the mean stress in a solid. (One important difference
between the stress and diffusion tensors, however, is that
the latter must always be positive definite, whereas the for-
mer does not have to be). While this tensor decomposition
is not unique, it is the most natural and physically motivated.
(Appendix A shows that the eigenvalues of Q and Q are
simply related, and that both share the same eigenvectors or
orthotropic directions.)

Having decomposed the diffusion tensor into its isotropic
and anisotropic parts, we can obtain a (scalar) measure of
their respective magnitudes (or lengths). Just as the magni-
tude of a vector r is given by the square root of its scalar
dot product ~ the magnitude of a tensor, such as Q, is
given by the square root of the (scalar) generalized tensor
product or tensor dot product, ~ (12), where

~ = ~(~I - (D})2 + (~ - (D})2 + (~3 - (D})2

= /3 Var(~)
3 3

Q:Q = I. I. D~ = ~ + ~ + xi
1-1 J-1

[8] This quantity is a scalar invarianL It is also the sum of the
squares of the deviations between the principal diffusivities
of Q and its mean diffusivity, (D) (see Eq. [5]), or alterna-
tively, three times the sample variance of the three eigenval-
ues of Q within a voxel. For completeness, we can rewrite
Eq. [12] (using Eq. [5] and a little algebra), as

.fQ";Q = "l«~ - ):;)2. + (~2. - ~)2.+ (~- ~1)2.).

Taking the magnitude of the anisotropic part of g, and
dividing it by the magnitude of the isotropic part of I), we
obtain a measure of the relative anisotropy, RA:

This generalized tensor product shares another property with
the vector dot product: They both are independent of the
position and orientation of the laboratory coordinate system
in which their respective components are measured. In par-
ticular, Q:Q (given in Eq. [8]) is a scalar invariant because

': it is a function solely of the eigenvalues of 0, and because
it is independent of their assignment or order (i.e., if we
permute the subscripts of the eigenvalues, the value of an
invariant quantity is unchanged.)

RefeITing to Eq. [6], we see that the magnitude or length
of the isotropic part of D is

~(D)l:(D)l = (D) .Jii = (D) J3. [9].
RA= IQ";Q l.fO-::o /V:;(i)~(O )1: (0 )1 = :J3 TD> = -""E'(X"j-

which is proportional to the scalar mean diffusivity, (D),
whereas the magnitude of the anisotropic part of Q is given
by

.fO:.o = ~!j~ ~Df - (D)/f)2, [10]

RA is quantitative (i.e., physically meaningful and invariant)
and dimensionless. For an isotropic medium. RA = O. RA
also ~sents the ratio of the sample standard deviation
[v'var(A)] to the sample mean [E(A)] of the three eigenval-
ues of Q in each voxel (A).

Alternatively, we propose a measure of the fractional an-
isotropy, FA:If we use Eq. [5] and exploit the symmetry of Q (i.e.,
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@.,fO-;o
V2~

(with an effective diffusion tensor Q), we can fonn a simi-
larity image by calculating the ( scalar) matrix product.
Q:Q', where Q' is the effective diffusion tensor in any arbi-
trary voxel. To obtain a measure of local similarity, we can
sum the matrix products between the reference diffusion
tensor, Q(r), and those in other voxels, Q(r'), weighting
their scaIar matrix products by a function of the distance
between them. Since this measure is a weighted sum of
scalar invariants. it too is a scalar invarianL A nabJral way
to do this is to define a correlation measure of structural
similarity, S(r), by convolving Q(r):Q(r') with a kernel,
K(r - r'), integrating their product over the entire imaging

volume, V:

FA = [1.5J

The FA index measures the fraction of the "magnitude" of
Q that we can ascribe to anisotropic diffusion. Like RA, FA
is quantitative and dimensionless. For an isotropic medium.
FA = O. For a cylindrically symmebic anisotropic medium
(i.e., with AI » A2 = A3), FA = I. Pierpaoli et at. (14)
recently presented images of the FA index in living human
brain. which are bright in regions where ~ are anisotropic
structures (such as the corpus callosum and the ventral inter-
nal capsule), but are dark in more isotropic regions (such
as in gray matter and in CSF-filled venbicles).

Iv Q(r):Q(r') K(r - r') dr,3
..S(r) - V

D(r):D(r)

With no a ~.or! infonnation, it is optimal to choose a nor-
malized isotropic Gaussian convolution kernel (although
other windows could be chosen if additional a priori informa-
tion were available):

K(r - r

Measures of Macrostructural Diffusive Similarity

So far, we have considered only inlravoxel parameters.
specifically quantities that characterize diffusion isotropy
and anisotropy within a voxel. However, to measure macro-
Sb'Uctural features, we must examine the pattern or distribu-
tion of diffusion tensors within an image volume. Such a
measure might characterize the degree of macrostrucnlral
(diffusive) similarity. However, this requires intervoxel
comparisons. Below, we show how to measure the similarity
of diffusion tensors quantitatively.

Just as the dot product between two vectors measures their
degree of similarity or colinearity, the generalized tensor
( dot) product between two tensors measures their similarity.
A reasonable measure of S1IUctural (diffusive) similarity be-
tween media in different voxels is ~. However. to use
this formula as a measure of ( diffusive) similarity, we must
demonsb'ate that it possesses the required properties of a
quantitative measure (i.e., objectivity as well as translatiooal
and rotational invariance) . These properties are demon-
strated in Appendix B, where we also show that g:O' can
be expressed in terms of the eigenvalues (~ and X;) and
eigenvectors (8t and 8;) of 0 and 0', respectively. i.e..

[18]
We chose an isotropic convolution kernel so that DO direc-
tional bias is introduced. We also require that the cOOvoIution
kernel have an area equal to one, to normalize tile resulL
This formula can be evaluated efficiently (even foc 3-D data
sets) using the convolution theorem of discrete Fouri~ trans-
forms (15). Equation [18] extends the fonnalism introduced
by MalT (16) to smooth images.

For discrete MR images, Eqs. [17] and [18] 00 oot apply
siIM:e the diffusion tensors ale not continuous fulx:tioos of
position, but voxel-averaged quantities defined within each
voxel. We must therefore replace the integral in Eq. [17]
with a discrete sum over voxels within the image sp.:e:

,
3 3

0:0' = I. I. ~(8r8;)2
1-1.-1

[16]
S(r)

3 3
= I. I. I. (I. I. At(r)~(r')[.r(r)..(r')]2)

, . . 1-1-1
1 (-(r - r')T(r - r'»)"1(2';;9 cxp 20- 2 ~ J 6z

Geometrically, we can use Eq. [16] to devise scalar mea-
sures of the similarity of the size, shape, and orientation of
two different diffusion ellipsoids constructed from 0 and
0'. Since all ~ and >..; are positive, and so are (81 8;)2,
every term in Eq. [16] is positive. Note that the eigenVectors
8. and 8; of two different diffusion tensors are generally DOt
parallel or orthogonal to one another.

Now that we have developed an invariant quantity that
measures the similarity of diffusion tensors in different vox-
eIs, we can construct new scalar images from tile diffusion
tensor image [i.e., the imaze in which every voxel contains
an estimated diffusion tensor (1)]. To measure macrostruc-
tural similarity with respect to a particular reference voxel

having used the substibJtions

r' = (/6.x, 116.y, m6.z;) T;

r = (i6.x,j6.y, ~)T;

dr') = 6.x6.y6.t;,
and

[19b]
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tion coefficient. The term containing the delta function, [I
- c5 (r - r')]. eliminates the contribution produced by the
inner product of the reference deviatoric with itself,
Q(r):Q(r). Since O(r) is a weighed sum of scalar invari-
ants, it too is a scalar invariant. It can also be displayed as
an image whose intensity should be large where the fiber-
tract direction field is regular or relatively uniform. For ex-
ample, in normal brain, we would expect a gray-scale image
ofO(r) to be bright in organized regions (such as the corpus
callosum and the optical tract), and dark in less-organized
regions (such as fluid-filled ventricles, in gray matter, and
even some more-disordered regions of white matter).

For MR images, we replace the integral with a sum over
discrete voxels in the image space

where .:lx, .:ly, and Az represent the individual voxel di-
mensions. These definitions apply for both isotropic and
anisotropic voxels. To mitigate errors introduced at the
boundaries of the imaging volume, we can pad the multislice
or 3-D images with zeros. The correlation length 0" in Eq.
[ 18] should now be at least as large as the smallest voxel
dimension.

Fiber-Tract Organization Measures

To measure the degree of fiber-tract organization, we use
a measure of the similarity between the anisotropic parts (or
deviatorics) of diffusion tensors in different voxels, 0:0'.
In Appendix C we. derive the generalized tensor product
between the diffusion deviation tensors in a reference and
an arbitrarily chosen voxel, 0:0', in tenDS of their eigenvec-
tors and eigenvalues, obtaining O(r) = L L !.

I . .
J J

1:. 1:. ~(r»..(r')[eI(r)8.(r')]2
i-I .-1

3 3, 3 3

0:0' = L L ~<8I.;)2 - j<L ~)<L x,:>
i-I .-1 i-I .-1

[20]

Equivalently, Eq. [20] can be written as

I};:I};' = 0:0' - 3(0)(0'), (2ij

x I ex (-<r-rl)T<r-rl» )'J('2;;3';i p 262

- 6(r - r'»Ax.6.y~ [23]x

and use the substitutions in Eq. [19b] above.

MATERIALS AND METHODS

where we have used Eq. [5] above. Therefore, the tensor
product between two diffusion deviation tensors is the tensor
product between their respective diffusion tensors minus
three times the product of their respective mean diffusivities.
Since Q:Q' and (D) (D') are both invariant, 0:0' is also
invariant.

Now that we have defined an invariant measure of similar-
ity for anisottopic structures, we can again apply the convo-
lution averaging procedure used above to develop a measure
of fiber organization. To retain infonnation about local order

" (i.e., tissue domains with similar structure and orientation)
. within the vicinity of the reference voxel. we again weight

the scalar matrix products between deviatorics in neigh-
boring voxels more heavily than we do those between distant
ones. By analogy, we define a correlation measure of organi-
zation, O(r):

MR data were obtained with a General Electric 2.0 T
Omega MR system (GE NMR Instruments, Fremont, Cali-
fornia) equipped with self-shielded gradients (Acustar 290)
capable of producing pulses up to 4.0 G/cm. A homebuilt
quadrature coil (I 3 cm diameter) was used as a radiofre-
quency transmitter and receiver. We acquired 21 axial
multislice diffusion-weighted 20 spin-echo images of living
cat brain in under 3 h. Imaging acquisition parameters were
as follows: four axial slices, 2 mm slice thickness, TRITE
of 2000/70, two repetitions per image, 90 mm field of view,
40 kHz bandwidth, 128 X 256 in-plane resolution. Different
levels of diffusion weighting were obtained by varying the
strength of pairs of trapezoidal gradient pulses placed on
both sides of the 1800 pulse between 0 and 3 G I cm (17-
19). The diffusion sensitizing gradients had a duration of
19 ms and were separated by a time interval of 20 ms. The
highest b-matrix values were on the order of 850 s/mm2.
Diffusion gradients were applied in seven noncollinear direc-
tions (20). From the measured T 2-weighted signal, A(TE),
and the b matrix calculated from each sequence (2 J ), we
estimated ~ in each voxel, using weighted multivariate linear
regression of (20):

O(r)

[22]

The normalization of the deviatorics in the integrand guaran-
tees that the anisotropic macrostructural similarity index will
always lie between 0 and I, ~th 0 indicating no order and
I indicating a locally uniform fiber-tract pattern. The tensor
product in the integrand ofEq. [22] now resembles a correla-
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FIG. 3. The fractional anisocropy index. Eq. [IS]. evaluated from die
estimated effective diffusion tensor in e-=b voxelFIG. 2. Image of Trace(g) for cat brain, calculated using Eq. [5].

T~(D) arises naturally as an invariant imaging parameter from the de-
composition of the effective diffusion tensor into its isotropic and anis0-
tropic parts, as in Eq. [4].

3 3

= - L L bVDV.'
i-I i-I

ID(~~'
A(O) ,

[24]

ant quantity as a useful MRI parameter whose value is
independent of the orientation of anisotropic structures
within a voxel (22). Figure 2 shows an image of Trace ( D)
= 3 ~D) for the live cat.

The invariant relative anisotropy index given in Eq. [14]
embodies the three-dimensional character of diffusion an-
isotropy. It is particularly instructive to compare this indexThe indices above were calculated from D estimated in each

voxel.

EXPERIMENTAL RF$ULTS AND DISCUSSION

'.

Figure 2 shows the isotropic part of the diffusion tensor,
Trace ( I) in cat brain, calculated from I) in each voxel using
Eq. [5]. Figure 3 shows the fractional anisotropy index, Eq.
[IS], calculated from I) in each voxel. Figure 4 shows die
organization index, Eq. [23] calculated from the series of
multi slice images. For ease of implementation, we used a
rectangular window including only nearest neighbor voxels
rather than the Gaussian window suggested above.

One of the novel contributions of this work is the use of
the tensor decomposition (Eq. [4]) and the tensor product
(e.g., in Eq. [8]) to derive intrinsic parameters characteriz-
ing features of isotropic and anisotropic diffusion in tissues
and other media. This approach also provides a unified con-
ceptual framework with which to present these invariant
parameters.

The first parameter that arises naturally from this de-
composition is the magnitude of the isotropic part of I),
(0) (see Eq. [5]), the mean diffusivity obtained by aver-
aging the translational displacement distribution uni-
formly in all directions ( II). We first proposed this invari-

FIG. 4. The organization index (Eq. [23]) evaluated IISiDg three contig-
uous axial slices of in vivo cat brain. The image was implemented using a
simplified algoridlm in which the convolution kmneI was a OOX fuDCtiOll
that included only nearest-neighbor voxels.
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we must specify it when using them. It will be interesting
to study systematically how these measures of isotropy, an-
isotropy, similarity, and organization in tissues and other
media are affected by voxel size (e.g., in microscopic diffu-
sion tensor imaging studies) (24). Fmally, if the voxel di-
mensions are not significantly smaller than the regions in
which there are distinct tissue types. then their COn'elation
length. 0'. will always be too large to resolve any local order
or structural similarity. Such is the case in the corpus callo-
sum in Fig. 4.

Although it does possess the required properties of a quan-
titative MRI parameter, we do not want to leave the impres-
sion that the invariant organimtional measure proposed in
Eq. [23] is the only admissible measUIe of local order. 0d1er
measures. including some based on the Shannon information
(25), are attractive. However, to estimate them requiIeS seg-
menting a high-dimensional parameter space; ironically. this
leaves us with the same problem that we posed in the Intro-
duction-to reduce the complexity of a high-dimensional
data set like the diffusion tensor image.

CONCLUSIONS

. One of our aims has been to propose new and useful
MRI parameters that behave as physiological or histological
"stains", as well as a fannal prescription for deriving them
from the effective diffusion tensor, Q. The ~ifi.c parame-
ters we propose stain for intrinsic structmal and physiologi-
cal feablres such as diffusion isotropy, diffusion anisotropy,
structural similarity, and fiber-tract organization. A quantita-
tive physiological stain must be insensitive to an arbitrary
rotation and translation of die laboratory coordinate system.
We show that to characterize diffusion anisotropy (26), we
must at least know all three eigenvalues of Q, and that to
characterize the degree of sb1JCnlral similarity or fiber-1r¥t
organization adequately, we must know both the eigenvalues
and eigenvectors of Q (and those in surrounding voxels).
This information can be calculated directly using all ele-
ments (i.e., both diagonal and off-diagonal elements) of die
estimated diffusion tensor, 0, but cannot be calculated from
the apparent diffusion coefficients. ADCs obtained in two or
three orthogonal directions. In general. measurements based
upon ADCs obtained in two or three orthogonal directions
cannot be used to assess tissue anisotropy quantitatively, or
any other feature that is related to iL

In previous studies, it bas been demonstrated that with
fast diffusion-weighted imaging sequences. such as higb-
resolution diffusion-weighted EPI (27). we can ~-81~ an
effective diffusion tensor, 0, in vivo in each voxel in under
30 min (14), a reasonable period in which to make a clinical
assessmenL The new imaging parameters proposed above
can be calculated from Q in each voxel almost instantly,
using conventional software packages. Therefore. as fast im-
agers become more widely available. so should one's ability

to the "SO" anisotropy measure proposed by van Gelderen
et al. (Eqs. [3a], [3b]), which is not rotationally or ttansla-
tionally invariant. The primary difference betWeen these two
measures is that Eq. [14] contains the sum of the squares
of the off -diagonal elements of Q, whereas Eqs. [3a], [3b]
do not. (One can see this by comparing Q:Q in Eq. [II]
and the numerator in Eq. [3a]). From this, we predict that
the SO measure of anisotropy will depend on the orientation
of the anisotropic structures with respect to the laboratory
coordinate frame, and thus will introduce an artifact into the
measurement of anisotropy that depends upon orientation.
Based upon the form of Eq. [3a], we can even predict how
this artifact will manifest itself. The error in the SO measure
will be smaller for anisotropic structures that lie parallel to
one of the laboratory coordinate (:x-y-z) axes, but may be
as large as 100% for S1Iuc:tures oriented obliquely to all
of the coordinate axes, making those anisotropic structures
appear almost isotropic.

Generally, knowing the ADCs measured in any three or"'
thogonal directions (as in Eqs. [3a], [3b]) is not sufficient
to characterize diffusion anisotropy. By examining the fOnD
of the scalar invariant Q:O in Eq. [12], and the anisotropy
measures we propose in Eqs. [14] and [15], we see that to
characterize diffusion anisotropy adequately requires at least
knowing the three eigenvalues of Q. Since in most MRI
applications we do not determine them a priori. we must
generally resort to calculating them from the diagonal and
off-diagonal elements of the estimated diffusion tensor, g
(1,20).

Equation [20] has an interesting potential application: It
could be used to disc:riminA~ between different struc:t\D'al1
an:hitectural motifs, such as between isotropically or aniso-
tropically packed fibers. or between fiat or tWisted fiber
sheets (in which. for example. 82 and 8) rotate around 8.).
This application may be of use in elucidating fiber' an:hitec-
tura1 motifs in the heart (6, 23).

The organizational index, shown in Fig. 4, shows high
contrast in the corpus c:allosum and ventral internal capsules.
where we know that the nerve fiber tracts run parallel to
each other. In cortical regions containing white matter, the
contrast is lower. Anatomic:ally, these are regions in which
we know the fiber patterns are less coberenL There is virtu-
ally no observed contrast in the gray matter or in the CSF-
filled ventricles. where there is effectively no macroscopic
organization.

While the scalar invariant MRI parameters are insensitive
to the orientation of the sample. to the orientation of the
gradients, and to the laboratory coordinate system. they may
be affected by other independent parameters in the NMR
experiment. such as voxel dimension. When we discretize
the structural similarity and fiber organization measures (as
in Eqs. [19a] and [23a]), we introduce a new length scale:
th~ characteristic length of the voxel. These invariant mea-
sures are not guaranteed to be independent of voxel size. so
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to glean new structUral and physiological information calcu-
lated from diffusion tensor images.

.~; 0 0-~ 0 0

.&= 0 0 ;4,'= 0 ~z 0 [Sic]~2
APPENDIX A

.0 0 0 0 X;.X3
It is easy to show that the isotropic part of Q vanishes

(i.e., its trace is zero). This can be demonstrated using Eqs.
[5] and [6]:

Here. it is convenient to introduce index notation and the
Einstein ~Imm~rion convention (28) (Le.. any index ap-
pearing twice in an exprusioD is automatically SI~~ over
the range of values that index assumes). Using Eq. [Bla],
we can rewrite O:Q' as

Trace(Q) - Tra:e(D) - (D)Trace(l)

- 3(D) - 3(D) = O.

0:0' = DqDq = EaA"EjlE:'A~Ej, [B2]In addition, the eigenvalues of Q and 0. are related. The
eigenvalues of g are detennined from the charxtcristic
equation:

Since, 4 and 4' are diagonal matrices, we can rewrite Eq.
[Blc] as

ID - ).jJ - 0 [A2]

whereas the eigenvalues roc 0 are given by

AAt = ~At and A;' = ~; 6.,

(no summation over .f and k !) [B3a,b]

where 6,. is the Kronecker delta (28). Substituting Eq
[B3a.b] into [B2] and simplifying, we obtain

10 - x'll - 10 - (0)1- x'll
- 10 - «0) + X')1! - o. [A3]

0:0' = E~ItEjIE:'>';6.Ej, = x.E.Eja>:.E:'Ej6[84]Equations [A2] and [A3] show that the c~c equa-
tions for Q and Q are identical, excep,t that the eigenvalues
of Q and 0, ~ and ~'. respectively, differ by me mean
diffusivity, (D), i.e.,

By commuting and regrouping tenDs. Eq.,[B4] t..:.:viD!:~S

Q:Q' = Xt>.;(EaE&)(EjtEJ.)

= Xt>.; (EI.E:')(E~EJ.)
~ - (0) + ~' «~' - ~ - (0) lA4

[BS]

It follows directly that Q and Q also possess the same eigen-
vec;tors, 8" since in both cases we must solve the same set
of mattix equations to obtain them.

The quantities in parentheses above represent the dot product
between eigenvectors of Q and Q'. Since j and i are dummy
indices. dlese 00t products can be rewritten as

(Q - Y)8/ = 0 lA:>J ET E' - ET E' - DT D'II ,. - jj j. - QtQ.'.. [B6]
This means that these two tensors share the same principal
or orthotropic directions. Now using Eq. [86], Eq. [BS] beco~

APPENDIXB 0:0' = ~(BIB;)2
3 3- I. I. ~(BrB;)2. [B7]

t-1_1
To express Q:O' in tenDS of the eigenvalues and eigen-

vectors of Q and 0', we first diagonalize them according to

g = E4~; 0' = E'A'E,T [Bla]

where E and E' are matrices whose columns are the ortho-
nonnal eigenvectors of Q and 0', respectively, i.e.,

E' = (8~18~183)E = (8118218,); [Bib]

which is what we set out to show.
Now, to show that Q:Q' is an invariant quantity, we need

only show that the right-hand side of Eq. [B7] is invariant.
Although it is well known that all eigenvalues of a symmetric
matrix are invariant under any proper rotation of d1e labora-
tory coordinate system [for a proof see (29)], we still must
show that BIB; is invariant. This seems clear from geometri-
cal considerations and is also easy to demooStr3Ie algebrai-
cally.

If A is a b'ansfonnation matrix between eigenvectors in
two laboratory frames

and where d and d' are the diagonal matrices containing
the eigenvalues of 0 and 0'. respectively:
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3 3

D:'" = L D~ = L >.;.
---I .-1

A_O d A_'O - ,~k = 8k an ~s - 8s. [BS]
3 3

DM = I. DM = I. A. and
tal t-1

and A is a proper orthogonal b'ansfonnation (30), i.e.,
(CS]

ATA = A-tA = 1. [B9] we can now use Eqs. [CSJ and Eq. [16J to write Eq. [C4]
in tenDS of the eigenvectors and eigenvalues of Q and 8)',
as in Eq. [20].then the inner (dot) product of the eigenvectors is the same

in both frames:
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eTe' = ( A_O) T( Ae'O ) = sOTATAe'Oi I OCii - I i a - I

- eOTle 'O - SOTS'O- i_I - i I. [BIO]

This equation also demonstrates that 8 I 8; is invariant for
all s and k, and thus 1):1)' is invariant.
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